EAMCET -2012

Date : 12-05-12

CENTRAL OFFICE- MADHAPUR

ENG SUB	INEERING : MATHS	EA	MCET-2012	DATE: 12-05-12 MARKS: 80
1.	The equation of a stra	ight line passing thre	ough the point (1, 2) a	nd inclined at 45° to the line
	y = 2x + 1 is			
	1) $5x + y = 7$	2) $3x + y = 5$	3) $x + y = 3$	4) $x - y + 1 = 0$
SOL	$Slope = \frac{m + \tan \alpha}{1 - m \tan \alpha} or \frac{m - \alpha}{1 + m}$	$-\tan \alpha$ $n \tan \alpha$		
	$= -3, \frac{1}{3}$	equation of line 3x +	y = 5	
2.	A point moves in the x dicular lines is always point, is	xy – plane such that th equal to 5 units. The	he sum of its distance : e area (in square unit	from two mutually perpen- s) enclosed by the locus of the
	1) $\frac{25}{4}$	2) 25	3) 50	4) 100
SOL	x + y = 5	area = $2c^2 = 50$		
3.	The distance between	the parallel lines give	ven by $(x + 7y)^2 + 4\sqrt{2}$	$\overline{2}(x+7y)-42=0$ is
	1) $\frac{4}{5}$	2) $4\sqrt{2}$	3) 2	4) $10\sqrt{2}$
SOL	Put x + 7y = t	$t^2 + 4\sqrt{2}t - 42 = 0$		
	$t = \frac{-4\sqrt{2} \pm \sqrt{32 + 168}}{2}$	$=\frac{-4\sqrt{2}\pm10\sqrt{2}}{2}$	$= 3\sqrt{2}, -7\sqrt{2}$	
	$x + 7y - 3\sqrt{2} = 0, x + 7$	$y + 7\sqrt{2} = 0$	Distance = $\frac{210\sqrt{2}}{5\sqrt{2}}$	-=2
4.	If the area of the triang a =	e formed by the pair o	f lines $8x^2 - 6xy + y^2 = 0$	and the line $2x + 3y = a$ is 7 then
	1) 14	2) $14\sqrt{2}$	3) $28\sqrt{2}$	4) 28
SOL:	Given area = 7			
	$\Rightarrow \frac{n^2 \sqrt{h^2 - ab}}{\left am^2 - 2hlm + bl^2\right } = r$	7		
	$\Rightarrow \frac{a^2 \sqrt{9-8}}{ 72+36+4 } = 7$	$\Rightarrow a^2 = 7x112 = 784$	$4 \Longrightarrow a = 28$	

5.	If the pair of lines given by $(x^2 + y^2)\cos^2 \theta = (x\cos\theta + y\sin\theta)^2$ are perpendicular to each							
	other, the	en θ =						
	1) 0		2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$		4) 3-	$\frac{\pi}{4}$	
SOL;	Coefficier	nt of x^2 + coef	ficient of $y^2 = 0$					
	$\Rightarrow \cos^2 \theta$	$=\sin^2\theta \Rightarrow$	$\tan^2\theta = 1 \Longrightarrow \tan\theta = 1$	$\pm 1 \Longrightarrow \theta = \frac{\pi}{4} (o$	$r)\frac{3\pi}{4}$			
6.	Given the	e circle C wi	th the equation $x^2 + y^2$	$x^2 - 2x + 10y - 3$	38 = 0 .			
	Match th	e List – I wi	th the List – II given be	elow concernii	ng C:			
	List – I			List – II				
	i) The equ	uation of the	polar of	a) $y + 5 = 0$				
	(4,3) wi	th respect to	o C	N.Y.				
	ii) The eq	uation of th	e tangent at	b) x = 1				
	(9, -5)	on C	TUM					
	(11) The eq	quation of th	e normal at	c) $3x + 8y =$: 27			
	(-7, -5	o) on C						
	IV) The ed	juation of the	(1 3)	a) $x + y = 3$				
	C pass	ing inrough	(1, 5)	$\mathbf{e} \mathbf{x} = \mathbf{y}$				
	i i i i i i	ii iii	'iv		612	າລັ		iv
	1) c	<u>п</u> <u>ш</u>	h	5. 2:00	2) d	<u>п</u> е	<u>m</u> a	<u>1v</u> b
	1) c	e a	b	NSO DE	4) d	b	a	e
SOI ·	i) polar eq	uation is s -	$0 \rightarrow 3r + 8v - 27 = 0$					
SOL.	i) polar eq		10^{-7} $3x + 6y = 27 = 0$					
	ii) tangent	at (9, −5) is	$s_1 = 0 \rightarrow x - 9 = 0$					
	iii) equatio	on of normal	is passing through (-7, -	-5) and $\rightarrow y + 5$	5 = 0			
	centre (1, -5)						
	iv) equation	on of diametr	e is $\rightarrow x - 1 = 0$					
7.	Consider such that	the circle x the line seg	$y^{2} + y^{2} - 4x - 2y + c = 0$ ment PA meets the circ	whose centre i cle in Q with P	is A(2, 1). PQ = 5, the	If the en c =	point]	P(10, 7) is
	1) – 15		2) 20	3) 30		4) – 1	20	
SOL:	AP = 10		$X \xrightarrow{5} Q XA$					
	Q = Mid p	point of AP =	(6, 4)	(6, 4) lies or	$n O^{le} \therefore c =$	= -20		

ENGINEERING (CODE-D) EAMCET -2012 Date : 12-05-12 Let x + y = k be a normal to the parabola $y^2 = 12x$. If p is length of the perpendicular from the 11. focus of the parabola onto this normal, then $4k - 2p^2 = 0$ 1)1 2)03) -1 4)2SOL: Compare with normal of $y^2 = 12x$ we get K=9 S = (3,0)also $p = \frac{|3(1)-9|}{\sqrt{2}} = \frac{6}{\sqrt{2}}$ $\therefore 4k - 2p^2 = 36 - 2\left(\frac{36}{2}\right) = 0$ If the line 2x + 5y = 12 intersects the ellipse $4x^2 + 5y^2 = 20$ in two distinct point A and B, then 12. mid point of AB is 1)(0,1)2)(1,2)(1,0)(4)(2,1)SOL: Clearly by verfication only option (2) lies on the given line Equation of one of the tangents passing through (2,8) to the hyperbola $5x^2 - y^2 = 5$ is 13. 3) x + y + 3 = 01) 3x + y - 14 = 02) 3x - y + 2 = 04) x - y + 6 = 0SOL: Hyperbola is $\frac{x^2}{1} - \frac{y^2}{5} = 1$, equation of tangent is $y = mx \pm \sqrt{m^2 - 5}$ but (2,8) lies on it $\Rightarrow (8-2m)^2 = (m^2-5) \Rightarrow m=3$ $\therefore 3x - y + 2 = 0$ The area (in square units) of the equilateral triangle formed by the tangent at $(\sqrt{3},0)$ to the 14. hyperbola $x^2 - 3y^2 = 3$ with the pair of asymptotes of the hyperbola is 3) $\frac{1}{\sqrt{3}}$ 1) $\sqrt{2}$ 2) $\sqrt{3}$ 4) $2\sqrt{3}$ SOL: Tangent is $s_1 = 0$ is $x(\sqrt{3}) = 3 \rightarrow x = \sqrt{3} \rightarrow (1)$ Asymptotis are $x + \sqrt{3}y = 0 \rightarrow (2)$ $x - \sqrt{3}y = 0 \rightarrow (3)$ \therefore area = $\frac{1}{2} \left| 2\sqrt{3} \right| = \sqrt{3}$ **P**.**I** are $(0,0), (\sqrt{3},-1); (\sqrt{3},1)$ The radius of the circle $r = 12 \cos \theta + 5 \sin \theta$ is 15. 1) $\frac{5}{12}$ 2) $\frac{17}{2}$ 3) $\frac{15}{2}$ 4) $\frac{13}{2}$ **Sol:** $r = 12\frac{x}{r} + \frac{5y}{r}$ $r^2 = 12x + 5y$ $x^{2} + y^{2} - 12x - 5y = 0$ $r = \sqrt{36 + \frac{25}{4}} = \sqrt{\frac{144 + 25}{4}} = \sqrt{\frac{169}{4}} = \frac{13}{2}$

ENGINEERING (CODE-D) EAMCET -2012 Date : 12-05-12 16. If x - coordinate of a point P on the line joining the points Q(2,2,1) and R(5,1,-2) is 4, then the z -coordinate of P is 1) -2 2) -1 3)1 4) 2 **Sol: P** divides **QR** in the ratio = $x_1 - x : x - x_2$ =2-4:4-5= -2: -1 = 2:1 $P = \left(\frac{10+2}{3}, \frac{2+2}{3}, \frac{-4+1}{3}\right)$ $=\left(4,\frac{4}{3},-1\right)$ A straight line is equally inclined to all the three coordinate axes. Then an angle made by the 17. line with the y-axis is 2) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ 3) $\cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$ 1) $\cos^{-1}\left(\frac{1}{2}\right)$ 4) $\frac{\pi}{4}$ SOL: put l = m = n in $l^2 + m^2 + n^2 = 1 \Rightarrow 3l^2 = 1 \Rightarrow l = \pm \frac{1}{\sqrt{3}}$ \therefore angle made by line in with y^- axis = $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ If the foot of the perpendicular from (0,0,0) to a plane is (1,2,3), then the equation of the plane 18. is 1) 2x + y + 3z = 14 2) x + 2y + 3z = 14 3) x + 2y + 3z + 14 = 0 4) x + 2y - 3z = 14SOL: Let P = (x, y, z)equation of \overline{QR} is $\frac{x-2}{2} = \frac{y-2}{1} = \frac{z-1}{2}$ $x^{2} + y^{2} - 12x - 5y = 0$ $r = \sqrt{36 + \frac{25}{4}} = \frac{13}{2}$ put (x, y, z) on it The equation of the sphere through the points (1,0,0) (0,1,0) and (1,1,1) and having the small-19. est radius 1) $3(x^2 + y^2 + z^2) - 4x - 4y - 2z + 1 = 0$ 2) $2(x^2 + y^2 + z^2) - 3x - 3y - z + 1 = 0$ 4) $x^2 + y^2 + z^2 - 2x - 2y + 4z + 1 = 0$ 3) $x^2 + y^2 + z^2 - x - y + z + 1 = 0$ Sol: Triangle is an equalateral triangle. Centre is centroid and radius is circum radius.

20.
$$\lim_{x \to \infty} \left(\frac{x+6}{x+1}\right)^{x+4} =$$

1) e^4 2) e^6 3) e^5 4) e
Sol: $= e^{e^4} = e^3$
21. Let $f: R \to R$ be defined by $f(x) = \begin{cases} \alpha + \frac{\sin[x]}{x} & \text{if } x > 0 \\ 2 & \text{if } x = 0 \\ \beta + \left[\frac{\sin x - x}{x^2}\right] & \text{if } x < 0 \end{cases}$
where [y] denotes the integral part of y. If f continuous at $x = 0$, then $\beta - \alpha =$
1) -1 2) 1 3) 0 4) 2
Sol: $\alpha + 1 = 2$
 $\alpha = -2$
 $\alpha + 1 = B$
 $1 = \beta - \alpha$
22. $f(x) = \log\left(e^x \left(\frac{x-2}{x+2}\right)^{3/4}\right) \Rightarrow f^4(0)$
 $1) \frac{1}{4}$ 2) 4 3) $\frac{-3}{4}$ 4) 1
SOL: $f(x) = x + \frac{3}{4}[\log(x-1) - \log(x+2)]$
 $f^4(x) = 1 + \frac{3}{4}\left[\frac{1}{x-2} - \frac{1}{x+2}\right] = 1 + \frac{3}{x^2-4} \Rightarrow f^4(0) = 1 - \frac{3}{4} = \frac{1}{4}$
23. If $xy \neq 0, x + y \neq 0$ and $x^m y^n = (x + y)^{m+n}$ where $m, n \notin N$ then $\frac{dy}{dx} =$
 $1) \frac{y}{x}$ 2) $\frac{x + y}{xy}$ 3) xy 4) $\frac{x}{y}$
SOL; homegeneous function of degree of $m + n$ $\frac{dy}{dx} = \frac{y}{x}$

If the volume of a sphere increases at the rate of $2\pi cm^3 / sec$, then the rate of increase of its 28. radius (*in cm*/sec), when the volume is 288π cm³ is 2) $\frac{1}{72}$ 3) $\frac{1}{10}$ 4) $\frac{1}{0}$ 1) $\frac{1}{26}$ SOL: $\frac{du}{dt} = 2\pi cm^3 / sec$ $r^3 = 6^3$ $V = \frac{4}{3}\pi r^3$ $\mathbf{r} = \mathbf{6}$ $\frac{dV}{dt} = 4\pi r^2 \frac{dv}{dt}$ $\frac{2\pi}{4\pi\times6\times6} = \frac{dv}{dt}$ $\frac{dv}{dt} = \frac{1}{72} cm/\sec t$ **29.** If u = f(r), where $r^2 = x^2 + y^2$ then $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) =$ 1) f''(r) 2) $f''(r) + f^{1}(r)$ 3) $f''(r) + \frac{1}{r}f'(r)$ 4) f''(r) + rf'(r)**SOL:** $u_x = f^1(x)\sqrt{x} = f^1(x)\left(\frac{x}{r}\right)$ $u_{xx} = f^{11}(x)\frac{x^2}{x^2} + f^1(x)\frac{r - x^{x/r}}{x^2} = f^{11}(x)\frac{x^2}{x^2} + f^1(x)\frac{r^2 - x^2}{x^2}$ $u_{yy} = f^{11}(r)\frac{y^2}{r^2} + f^1(x)\frac{r^2 - y^2}{r^3}$ $u_{xx} + u_{yy} = f^{11}(r) + f^{1}(x)\frac{1}{r}$ **30.** $\int \frac{dx}{x^2 \sqrt{4+x^2}} =$ 1) $\frac{1}{4}\sqrt{4+x^2} + c$ 2) $\frac{-1}{4}\sqrt{4+x^2} + c$ 3) $\frac{-1}{4x}\sqrt{4+x^2} + c$ 4) $\frac{9}{4x}\sqrt{4+x^2} + c$ SOL: $\int \frac{dx}{x^3 \sqrt{\frac{4}{x^2} + 1}} \qquad \frac{4}{x^2} + 1 = t$ $\frac{-1}{8} \int \frac{dt}{\sqrt{t}} \qquad \frac{-8}{x^3} dx = dt$ $= \frac{-1}{4}\sqrt{t} + c = \frac{-1}{4x}\sqrt{4 + x^{2}} + C$

31.
$$\int \sec^{2} x \cos ec^{4} x dx = -\frac{1}{3} \cot^{2} x + k \tan x - 2 \cot x + c \Rightarrow k =$$

1) 4 2) 3 3) 2 4) 1
SOL:
$$\int \frac{dx}{\sin^{4} x \cos^{2} x} = \int \frac{\sin^{2} x + \cos^{2} x}{\sin^{4} x \cos^{2} x} dx$$

$$= \int \frac{dx}{\sin^{4} x \cos^{2} x} + \int \frac{dy}{\sin^{4} x}$$

$$= \int (\sec^{2} x + \csc ec^{2} x) dx + \int \csc^{4} x dx$$

$$= \tan x - \cot x + \int \csc ec^{2} x (1 + \cot^{2} x)$$

$$= \tan x - \cot x - \cot x - \frac{\cot^{2} x}{3}$$
32.
$$\int \frac{dx}{\sqrt{x - x^{2}}} =$$

1)
$$2 \sin^{-1} \sqrt{x} + c$$
3)
$$2x \sin^{-1} x + c$$
4)
$$\sin^{-1} \sqrt{x} + c$$
SOL:
$$\int \frac{dx}{\sqrt{x \sqrt{1 - x^{2}}}} = 2\theta + c = 2 \sin^{-1} \sqrt{x} + c$$
3)
$$2\pi \sin^{-1} x + c$$
4)
$$\sin^{-1} \sqrt{x} + c$$
31.
$$\int \frac{dx}{\sqrt{1 - x^{2}}} = 2\theta + c = 2 \sin^{-1} \sqrt{x} + c$$
32.
$$\int \frac{dx}{\sqrt{1 - x^{2}}} = 2\theta + c = 2 \sin^{-1} \sqrt{x} + c$$
33.
$$a > 0, \int_{x}^{2} \frac{\sin^{2} x}{1 + a^{2}} dx = \int_{-\pi}^{\pi} \frac{\sin^{2} (-x)}{1 + a^{-x}} dx = \int_{-\pi}^{\pi} \frac{a^{x} \sin^{2} x}{1 + a^{x}} dx$$
21.
$$\int \frac{\pi}{2} \sin^{2} x dx = 2 \int_{0}^{\pi} \sin^{2} x dx = 2 \left(2 \int_{0}^{\pi} \sin^{2} x dx \right) = 4I_{2} = 4 \frac{1}{2} \times \frac{\pi}{2} = \pi$$
34. The area (in square units) bounded by the curves $y^{2} = 4x$ and $x^{2} = 4y$ is 1)
$$\frac{64}{3}$$
2)
$$\frac{16}{3}$$
3)
$$\frac{8}{3}$$
3)
$$\frac{8}{3}$$
4)
$$\frac{2}{3}$$
SOL: A rea bounded by $y^{2} = 4ax$, $x^{2} = 4ay$ is $\frac{16}{3} a^{2}$ Sq units
35. The value of the integral $\int_{0}^{4} \frac{dx}{1 + x^{2}}$ obtained by using Trapezoidal rule with $h = 1$ is 1)
$$\frac{63}{85}$$
2) $\tan^{-1}(4)$
3) $\frac{108}{85}$
4) $\frac{113}{85}$

EXAMPLEMING (CODF-10)
FAMCET -2012
SOL: x 0 1 2 3 4

$$f(x) = \frac{1}{1+x^2} 1 \frac{1}{2} \frac{1}{5} \frac{1}{10} \frac{1}{17}$$

$$T.R is \int_{x}^{5} f(x)dx = \frac{n}{2} [(y_0 + y_1) + 2(y_1 + y_2 + ...)]$$

$$\frac{1}{a} \frac{1}{1+x^2} dx = \frac{1}{2} [(y_0 + y_1) + 2(y_1 + y_2 + y_3)] = \frac{1}{2} [(1 + \frac{1}{17}) + 2(\frac{1}{2} + \frac{1}{5} + \frac{1}{10})] = \frac{113}{85}$$
(key
-4)
36. $\frac{dy}{dx} + 2x \tan(x - y) = 1 \Rightarrow \sin(x - y) =$
1) Ae^{-x^2} 2) Ae^{2x} 3) Ae^{x^2} 4) Ae^{-2x}
SOL: Put $x - y = t \Rightarrow \frac{dy}{dx} = 1 - \frac{dt}{dx}$
given equation becomes $2x \tan t = \frac{dt}{dx}$
 $x^2 = \log(\sin t + \log t) \sin 1 = Ae^{x^2}$
 $\sin(x - y) = Ae^{x^2}$ (key - 3)
37. An integrating factor of the differential equation $(1 + x^2)\frac{dy}{dx} + xy = \frac{x^4}{(1 + x^5)}(\sqrt{1 - x^2})^3$ is
1) $\sqrt{1 - x^2}$ 2) $\frac{x}{\sqrt{1 - x^2}}$ 3) $\frac{x^2}{\sqrt{1 - x^2}}$ 4) $\frac{1}{\sqrt{1 - x^2}}$
SOL: $(1 - x^3)\frac{dy}{dx} + xy = \frac{x^4}{1 + x^4}\sqrt{1 - x^2}(1 - x^3)$
Divide on both sides with $(1 - x^3)$
 $\frac{dy}{dx} + \frac{xy}{1 - x^2} = \frac{x^4 \cdot \sqrt{1 - x^2}}{1 + x^5} = \frac{1}{\sqrt{1 - x^2}}$ (key - 4)

EAMCET -2012

38. If f: R → R² and g: R⁺ → R are such that g(f(x)) =|sin x| and f(g(x)) = (sin
$$\sqrt{x})^{\frac{1}{2}}$$
, then a possible choice for f and b is
1) f(x) = x², g(x) = sin \sqrt{x} 2) f(x) = sin x, g(x) = |x|
3) f(x) = sin x², g(x) = \sqrt{x} 4) f(x) = x², g(x) = \sqrt{x}
SOL: g(f(x)) = $\sqrt{\sin^{2} x}$ =|sinx| $f(g(x)) = \left(\sin \sqrt{x}\right)^{2}$
39. If z→z is f : z→z is defined by $f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ 0 & \text{if } x \text{ is odd} \end{cases}$ then f is
1) onto but not one to one
3) one to one and onto 4) neither one to one nor onto
SOL: f(1) = 0 = f(3)
 $x = 0, \pm 1, \pm 2, \pm 3, ..., \infty$ + 2
 \therefore onto but not 1-1
40. If $\frac{1}{2 \times 4} + \frac{1}{4 \times 6} + \frac{1}{6 \times 8} + ..., (n-terms) = \frac{kn}{n \times 1}$ then k =
 $1) \frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) $\frac{1}{8}$
SOL: $\frac{1}{2} \left[\frac{1}{2} - \frac{1}{4} + \frac{1}{4} - \frac{1}{6} + ..., + \frac{1}{2n} - \frac{1}{2n + 2} \right] = \frac{1}{4} \left[1 - \frac{1}{n+1} \right] = \frac{1}{4} \left[\frac{n}{n+1} \right]$ \therefore k = $\frac{1}{4}$
41. A regular polygon of n sides has 170 diagonals. then n =
1) 12 2) 17 3) 20 4) 25
SOL: No. diagonals = $\frac{n(n-3)}{2} = 170$
 $n(n-3) = 340 = 20 \times 17$ $n = 20$

$$\frac{1}{42} = \frac{1}{42} = \frac{1}{42}$$

Γ

46.	$\frac{1}{x(x+1)(x+2)(x+1)(x+2)}$	$(n) = \frac{A_0}{x} + \frac{A_i}{x+1} + \dots$	$\cdot \frac{A_n}{x+n}, 0 \le r \le A_r =$	
	1) $(-1)^{r} \frac{r!}{(n-r)!}$	2) $(-1)^r \frac{1}{r!(n-r)!}$	3) $\frac{1}{r!(n-r)!}$	4) $\frac{r!}{(n-r)!}$
SOL:	By verification with $r=$	=1, n =2 and $r = 3, n = 4$		
47.	$1 + \frac{1}{3.2^2} + \frac{1}{5.2^4} + \frac{1}{7.2^6}$	+=		
	1) \log_e^2	2) \log_{e}^{3}	$3)\log_{e}^{4}$	$4)\log_{e}^{5}$
SOL:	$2\left[\frac{1/2}{1} + \frac{1/2^3}{3} + \frac{1/2^5}{5}\right]$	-]		
	$\log\left(\frac{1+1/2}{1-1/2}\right) = \log\frac{3/2}{1/2}$	$\frac{d^2}{2} = \log_e 3$		
48.		$\leq R = \frac{\pi}{4}, \tan\left(\frac{P}{3}\right), \tan\left(\frac{P}{3}\right)$	$\left(\frac{Q}{3}\right)$ are the roots of the	equation $ax^2 + bx + c = 0$,
	then			
	1) $a + b = 0$	2) b + c = 0	3) $a + c = 0$	4) $b = c$
SOL:	$R = \frac{\pi}{4} \Longrightarrow p + q = \frac{3\pi}{4}$	$\frac{p}{3} + \frac{q}{3} = \frac{\pi}{3}$		
	$\frac{\tan\frac{p}{3} + \tan\frac{q}{3}}{1 - \tan\frac{p}{3}\tan\frac{q}{3}} = 1$	$-\frac{b/a}{1-c/a} = 1 \qquad -b$	=a-c	a+b =c
4 9.	The product of real of	of the equation $ x ^{\frac{6}{5}} - 2$	$26 x ^{\frac{3}{5}} - 27 = 0$	
	1) -3 ¹⁰	2) -3 ¹²	3) $-3^{\frac{12}{5}}$	4) $-3^{\frac{21}{5}}$
SOL:	$\left x\right ^{3/5} = t$			
	$ x ^{3/5} = t$			
	$t^2 - 26t - 27 = 0$ t = 27 or -1			
	$ x ^{3/5} = t = 27$ only pr	roduct of x values = 3^5	$(-3^5) = -3^{10}$	
			× /	

If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$ then the coefficient of x in the 50. cubic equation whose roots are $\alpha(\beta + \gamma), \beta(\gamma + \alpha)$ and $\gamma(\alpha + \beta)$ is 1) 2q 2) $q^2 + pr$ 3) $p^2 - qr$ 4) r(pq - r)**SOL:** α, β, γ roots of Given $f(x) = x^3 + px^2 + qx + r = 0$ $\therefore \alpha + \beta + \gamma = -p$ $\alpha\beta + \beta\gamma + \gamma\alpha = q$ $\alpha\beta\gamma = -r$ Let $y = \alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma + \beta\gamma - \frac{\beta\gamma\alpha}{\alpha}$ $y = q + \frac{r}{\alpha}$ $\therefore \alpha = \frac{r}{v-q}$ $\Rightarrow \frac{r^3}{\left(x-q\right)^3} + \frac{pr^2}{\left(x+q\right)^2} + \frac{qr}{\left(x-q\right)} + r = 0$ $\Rightarrow (x-q)^3 + q(x-q)^2 + pr(x-q) + r^2 = 0$ \therefore coefficient of $x = q^2 + pr$ 51. Let $A = \begin{bmatrix} 2 & e^{i\pi} \\ i & i^{2012} \end{bmatrix} C = \frac{d}{dx} \left(\frac{1}{x}\right)_{1,1} D = \int_{2}^{1} \frac{dx}{x}$. If the sum of two roots of the equation $Ax^{3}+Bx^{2}+Cx+D=0$ is equal to zero, then B = 1) -1 2)03)1 4) 2 SOL: A = 1, B = ?, C = -1, D = -2**Sub in** $Ax^{3} + bx^{2} + cx + D = 0$ $x^{3} + Bx^{2} - x + 2 = 0$ $\alpha + \beta + \gamma = B$ $\mathbf{r} = -\mathbf{B} (\alpha + \beta = 0)$ Sub in given equal $B^{3} + B^{3} + B - 2 = 0$ **B=2**

52.
$$A = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}, B = \begin{bmatrix} 1 & -i \\ -1 & 1 \end{bmatrix} \Rightarrow A^{8}$$
1) 4B 2) 8 B 3) 64B 4) 128 B
SOL:
$$A^{2} = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix} \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$$

$$= \begin{bmatrix} -2 & +2 \\ +2 & -2 \end{bmatrix} = -2B$$

$$A^{8} = (A^{2})^{4} = (-2B)^{6} = 16B^{4}$$

$$B^{2} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & i \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 2B$$

$$= 164.2B$$

$$= 128 B$$
53.
$$f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & x(x-1)(x-2) & (x-1)x(x+1) \end{vmatrix} \Rightarrow f(2012) =$$

$$10 0 2 (T 3) = 500 4) 500$$
SOL:
$$f(x) = 0$$

$$f(2012) = 0$$
54. Let
$$A = \begin{bmatrix} -1 & -2 & -3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix} and C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$if a, b and c respectively denote the ranks$$

$$the ranks of A, B and C then the correct order of these number is$$

$$1) a < b < c 2) c < b < c 3) b < a < c 4) a < c < b$$
SOL: Range of A = a = 2

$$B = b = 1$$

$$b < c < a$$
55. Given that
$$a^{-2} = x$$

$$and that the system of equations$$

$$(a -)^{-1} = (a -)^{-1}$$

Sol
$$\begin{vmatrix} a\alpha + b & a & b \\ b\alpha + c & b & c \\ 0 & a\alpha + b & b\alpha + c \end{vmatrix} = 0$$

 $R_3 \to R_3 - \alpha R_1 - R \begin{vmatrix} a\alpha + b & a & b \\ z & b\alpha + c & b & c \\ -(a\alpha^2 + 2b\alpha + c) & 0 & 0 \end{vmatrix} = 0$
 $\Rightarrow -(a\alpha^2 + 2b\alpha + c) \cdot (\alpha c - b^2) = 0$
 $\Rightarrow ac - b^2 = 0 \quad (by \ a\alpha^2 + 2b\alpha + c \neq 0)$
56. If $a, b, c, d \in R$ are such that $a^2 + b^2 = 4$ and $c^2 + d^2 = 2$ and if $(a + ib)^2 = (c + id)^2(x + iy)$
then $x^2 + y^2 =$
 $1) 4 \qquad 2) 3 \qquad 3) 2 \qquad 4) 1$
SOL: $|a + ib|^2 = |c + id|^2 |x + iy|$
 $(\sqrt{a^2 + b^2})^2 = (\sqrt{c^2 + d^2})^2 \sqrt{x^2 + y^2}$
 $(a^2 + b^2) = (c^2 + d^2) \sqrt{x^2 + y^2}$
 $(a^2 + b^2) = 2\sqrt{x^2 + y^2}$
 $\Rightarrow x^2 + y^2 = 4$
57. If z is complex number such that $|z - \frac{4}{z}| = 2$, then the greatest value of $|z|$ is
 $1) 1 + \sqrt{2} \qquad 2) \sqrt{2} \qquad 3) \sqrt{3} + 1 \qquad 4) 1 + \sqrt{5}$
SOL: $|z| = |z - \frac{4}{z} + \frac{4}{z}| \le |z - \frac{4}{z}| + |\frac{4}{z}|$
 $|z| \le 2 + \frac{4}{|z|} \qquad \Rightarrow |z|^2 - 2|z| \le 4 \Rightarrow (|z^2| - 1)^2 \le 5 \Rightarrow \qquad |z| \le \sqrt{5} - 1$

58. If
$$\alpha$$
 is a non real root of the equation $x^{6} - 1 = 0$ then $\frac{2 + 3 + 4 + 5}{+1}$
1) 2) 1 3) 0 4) - 1
SOL: Since $a^{6} = 1$ w.t $1 + \alpha + \alpha^{2} + \alpha^{3} + \alpha^{4} + \alpha^{5} = 0$
 $(1 + \alpha) + \alpha^{2}(1 + \alpha) + \alpha^{4}(1 + \alpha) = 0$
 $(1 + \alpha)(1 + \alpha^{2} + \alpha^{4}) = 0$ GP $= \frac{\alpha^{2}(1 + \alpha) + \alpha^{4}(1 + \alpha)}{1 + \alpha} = \alpha^{2} + \alpha^{4} = -1$ (key -4)
59. The minimum value of $27 \tan^{2} \theta + 3 \cot^{2} \theta$ is
1) 15 2) 18 3) 24 4) 30
SOL: Since A.M \geq GM
 $\frac{27 \tan^{2} 0 + 3 \cot^{2} 0}{2} \geq \sqrt{27 \tan^{2} \theta \cdot 3 \cot^{2} \theta}$
 $= 27 \tan^{2} 0 + 3 \cot^{2} 0 \geq 18$ (key - 2)
60. $\cos 36^{6} - \cos 72^{0} = -2 \sin 54^{9} \sin(-18^{0}) = \frac{1}{2}$
61. $\tan x + \tan\left(x + \frac{1}{3}\right) + \tan\left(x + \frac{2}{3}\right) = 3 \Rightarrow \tan 3x - 1) 3$ 2) 2 3) 1 4) 0
SOL: $x = 15^{9}$ satisfy given equation
 $\tan 3x - \tan 45^{6} = 1$ (key = 3)
62. $3 \sin x + 4 \cos x = 5 \Rightarrow 6 \tan \frac{x}{2} - 9 \tan^{2} \frac{x}{2} = 1) 0$ 2) 1 3) 3 4) 4
SOL: $3\left(\frac{21}{1 + t^{2}}\right) + 4\left(\frac{1 + t^{2}}{1 + t^{2}}\right) = 5$ (where $t = \tan \frac{x}{2}$)
 $6t - 9t^{2} = 1$
 $6 \tan \frac{x}{2} - 9 \tan^{2}\left(\frac{x}{2}\right) = 1$ (key - 2)

63. If
$$\frac{1}{2} \le x \le 1$$
 then $\cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3-3x^2}\right) =$
1) $\frac{\pi}{6}$ 2) $\frac{\pi}{3}$ 3) π 4) 0
SOL: $\cos^{-1}x + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3}}{2}\sqrt{1-x^2}\right) =$
 $\cos^{-1}x + \cos^{-1}\left(\frac{1}{2}\right) - \cos^{-1}x = \frac{\pi}{3}$ (key - 2)
64. If a, b, c form a geometric progression with common ratio r, then the sum of the ordinates of the points of intersection of the line ax + by + c = 0 and the curve x + 2y^2 = 0 is
1) $-\frac{r^2}{2}$ 2) $-\frac{r}{2}$ 3) $\frac{r}{2}$ 4) r
SOL: a = a, b = ar, c = ar²
line in $\beta x + \beta r y + \beta r^2 = 0$
 $x + ry + r^2 = 0$
 $x = -ry - r^2 = \cdots$ (1)
sub in curve
 $2y^2 - ry - r^2 = 0$
sum of ordinates $= \frac{r}{2}$
65. The point (3, 2) undergoes the following three transformations in the order given
i) Reflection about the line $y = x$
ii) Translation by the distance 1 unit in the positive direction of x - axis
iii) Rotation by an angle $\frac{\pi}{4}$ about the origin in the anticlockwise direction.
Then the final position of the point is
1) $\left(-\sqrt{18}, \sqrt{18}\right)$ 2) $(-2, 3)$ 3) $\left(0, \sqrt{18}\right)$ 4) $(0, 3)$
SOL: Given point = (3, 2)
i) reflection about the line = (2, 3)
ii) translation through a distance = (3, 2)
iii) $X = -x\cos\theta + y\sin\theta = \left(\frac{-3}{\sqrt{2}} + \frac{3}{\sqrt{2}}\right) = 0$
 $Y = +x\sin\theta + y\cos\theta = \left(\frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}}\right) = 3\sqrt{2}$

66. If X is a poission variate such that
$$\alpha = p(X = 1) = P(X = 2)$$
 then $P(X = 4) =$

1)
$$2\alpha$$
 2) $\frac{\alpha}{3}$ 3) αe^{-2} 4) αe^{2}
SOL: P(X = 1) = P(X = 2)

$$\frac{\varrho^{\mathcal{A}} \tilde{\lambda}}{1!} = \frac{\varrho^{\mathcal{A}} \tilde{\lambda}^{\tilde{z}}}{2!} \qquad \lambda = 2$$

$$\alpha = P(X = 1) = e^{-2} \cdot 2 = \frac{2}{e^2}$$

40

34

40

37

$$P(X=4) = \frac{e^{-2} \cdot 16}{24} = \frac{2}{3}e^{-2} = \frac{\alpha}{3}$$

67. Suppose X follows a binomial distribution with parameters n and p, Where 0 . If

$$\frac{p(X=r)}{p(X=n-r)}$$
 is independent of n for every r, then p=

1)
$$\frac{1}{2}$$
 2) $\frac{1}{3}$ 3) $\frac{1}{4}$ 4) $\frac{1}{8}$
SOL: $\frac{P(X=r)}{P(X=n-r)} = \frac{\sqrt[n]{r} q^{n-r} p^r}{\sqrt[n]{r} q^r p^{n-r}} = \left(\frac{q}{p}\right)^{n-r}$ $\frac{q}{p} = 1 \ p = \frac{1}{2}$

In an entrance test there are multiple choice questions. There are four possible answers to **68**. each question, of which one is corret. The probability that a student know the answer to a question is 9/10.If he gets the correct answer to a question, then the probability that he was guessing is

1)
$$\frac{37}{4c}$$
 2) $\frac{1}{37}$ 3) $\frac{36}{37}$ 4) $\frac{1}{9}$
SOL: req. probability = $\frac{\frac{1}{10} \cdot \frac{1}{4}}{\frac{9}{10} \cdot 1 + \frac{1}{10} \cdot \frac{1}{4}} = \frac{1}{37}$
= $\frac{9}{10} + \frac{1}{40} = \frac{37}{40} \Rightarrow \frac{\frac{1}{40}}{\frac{34}{34}} = \frac{1}{37}$

69. There are four machines and it is known that exactly two of them are faluty .They are tested one by one, in a random order till both the faulty machines are identifid. Then the probability that only two tests are need is

1)
$$\frac{1}{3}$$
 2) $\frac{1}{6}$ 3) $\frac{1}{2}$ 4) $\frac{1}{4}$
SOL: Probability = $\frac{2}{4} \cdot \frac{1}{3} + \frac{2}{4} \cdot \frac{1}{3} = \frac{1}{3}$

A fair coin is tossed 100 times. The probability of getting tails an odd number of times is 70. 1) $\frac{1}{2}$ 2) $\frac{1}{4}$ 4) $\frac{3}{8}$ 3) $\frac{1}{2}$ SOL: $\frac{2^{99}}{2^{100}} = \frac{1}{2}$ 71. $\vec{a} = \vec{i} + \vec{j} - 2\vec{k} \Longrightarrow \sum \{(\vec{a} \times \vec{i}) \times \vec{j}\}^2 =$ 1) $\sqrt{6}$ 2) 6 4) $6\sqrt{6}$ 3) 36 SOL: $\sum ((\overline{a}, j)i)^2 = \overline{a}^2 = 6$ 72. Let $\overline{a}, \overline{b}$ and \overline{c} be three non-coplannar vectors and let $\overline{p}, \overline{q}$ and \overline{r} be the vectors defined by $\overline{p} = \frac{\overline{b} \times \overline{c}}{\left\lceil \overline{a} \overline{b} \overline{c} \right\rceil}, \overline{q} = \frac{\overline{c} \times a}{\left\lceil \overline{a} \overline{b} \overline{c} \right\rceil}, \overline{r} = \frac{a \times b}{\left\lceil \overline{a} \overline{b} \overline{c} \right\rceil}. \text{ Then } (\overline{a} + \overline{b}).\overline{p}(\overline{b} + \overline{c}).\overline{q}(\overline{c} + \overline{a})\overline{r} =$ 1)03) 2 2)13) 3 SOL: $\overline{a}.\overline{p} = \overline{b}.\overline{q} = \overline{c}.\overline{r} = 3$ 73. Let $\overline{a} = \overline{i} + 2\overline{j} + \overline{k}$, $\overline{b} = \overline{i} - \overline{j} + \overline{k}$, $\overline{c} = \overline{i} + \overline{j} - \overline{k}$. A vector in the plane of \overline{a} and \overline{b} has projection $\frac{1}{\sqrt{3}}$ on \overline{c} . Then, one such vector is 1) $4\overline{i} + \overline{j} - 4\overline{k}$ 2) $3\overline{i} + \overline{j} - 3\overline{k}$ 3) $4\overline{i} - \overline{j} + 4\overline{k}$ 4) $2\overline{i} + \overline{j} - 2\overline{k}$ SOL; By verification (3) 74. The point if intersection of the lines $l_1: \overline{r}(t) = (\overline{i} - 6\overline{j} + 2\overline{k}) + t(\overline{i} + 2\overline{j} + \overline{k})$ $l_2: \overline{R}(u) = (4\overline{j} + \overline{k}) + u(2\overline{i} + \overline{j} + 2\overline{k})$ is 1)(4, 4, 5)2)(6, 4, 7)(8, 8, 9)4) (10, 12, 11) SOL; By verification (3) The vectors $\overline{AB} = \overline{3i} - \overline{2j} + \overline{2k}$ and $\overline{BC} = \overline{i} - \overline{2k}$ are the adjacent sides of a parallelegram. The 75. angle between its diagonals is 2) $\frac{\pi}{3}or\frac{2\pi}{3}$ 3) $\frac{3\pi}{4}or\frac{\pi}{4}$ 4) $\frac{5\pi}{6}or\frac{\pi}{6}$ 1) $\frac{\pi}{2}$ SOL: $\overline{AC} = 2\overline{i} - 2\overline{j} + \overline{k}$ $\overline{BD} = -4i + 2i + 4\overline{k}$ Angle = $\cos^{-1} \left(\frac{\overline{AC} \cdot \overline{BD}}{|\overline{AC}| |\overline{BD}|} \right) = \frac{\pi}{4} \circ r \frac{3\pi}{4}$

76. If
$$p^{n}$$
, q^{n} , r^{n} terms of a geometric progression are the positive numbers a, b, c respectively,
then the angle between the vectors $(\log a^{2})\bar{i} + (\log b^{2})\bar{j} + (\log c^{2})\bar{k}$ and
 $(q-r)\bar{i} + (r-p)\bar{j} + (p-q)\bar{k}$ is
1) $\frac{\pi}{3}$ 2) $\frac{\pi}{2}$ 3) $\sin^{-1} \frac{1}{\sqrt{a^{2} + b^{2} + c^{2}}}$ 4) $\frac{\pi}{4}$
SOL: By verification, angle $= \frac{\pi}{2}$
77. A vertical pole subtends an angle $\tan^{-1}(\frac{1}{2})$ at a point P on the ground, If the angles
substended by the upper half and the lower half of the pole at P are respectively α and β ,
then $(\tan \alpha, \tan \beta) -$
1) $(\frac{1}{4}, \frac{1}{5})$ 2) $(\frac{1}{5}, \frac{2}{9})$ 3) $(\frac{2}{9}, \frac{1}{4})$ 4) $(\frac{1}{4}, \frac{2}{9})$
SOL: $\frac{1}{2}$ $\frac{\pi}{\beta}$ $\frac{1}{2} = \frac{\tan \alpha + \tan \beta}{1 + \tan \alpha \tan \beta}$ by verification $\tan \alpha = \frac{2}{9}$ \Rightarrow $\tan \beta = \frac{1}{2}$
 $\alpha + \beta = \theta$
 $\tan \theta = \tan(\alpha + \beta) \Rightarrow \frac{1}{2} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ by verification $\tan \alpha = \frac{2}{9}$ \Rightarrow $\tan \beta = \frac{1}{4}$
78. If α, β, γ are length of the altitudes of a traingle ABC with area Δ , then
 $\frac{\Lambda^{2}}{R^{2}}(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} + \frac{1}{\gamma^{2}}) =$
1) $\sin^{2} A + \sin^{2} B + \sin^{2} C$ 2) $\cos^{2} A + \cos^{2} B + \cos^{2} C$
3) $\tan^{2} A + \tan^{2} B + \tan^{2} C$ 4) $\cot^{2} A + \cot^{2} B + \cot^{2} C$
SOL: $\Delta = \frac{1}{2}\alpha = \frac{1}{2}b\beta = \frac{1}{2}c\gamma$
 $= \alpha = \frac{2\Lambda}{a}, \beta = \frac{2\Lambda}{b}, \gamma = \frac{2\Lambda}{c}$
 $G P = \frac{\Lambda^{2}}{a^{2}}(\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} + \frac{1}{\gamma^{2}}) = \frac{\Lambda^{2}}{R^{2}}(\frac{a^{2} + b^{2} + c^{2}}{4\Lambda^{2}})$
 $= \frac{4R^{2}(\sin^{2} A + \sin^{2} B + \sin^{2} C)}{4R^{2}}$ ($a^{2} + b^{2} + c^{2}$)

Γ

PHYSICS
81. A uniform rope of mass 0.1 kg and length 2.45 m hangs from a rigid support. The time taken by the transverse wave formed in the rope to travel through the full length of the rope is (Assume
$$g = 9.8m/s^2$$
)
1) 0.5 s 2) 1.6 s 3) 1.2 s 4) 1.0 s
Sol: [4]
 $t = 2\sqrt{\frac{l}{g}} = 2\sqrt{\frac{2.45}{9.8}}$
 $= 1 \sec$
82. When a vibrating tuning fork is placed on a sound box of a sonometer, 8 beats per second are heard when the length of the sonometer wire is kept at 101 cm or 100 cm. Then the frequency of the tuning fork is (consider that the tension in the wire is kept constant)
1) 1616 Hz 2) 1608 Hz 3) 1632 Hz 4) 1600 Hz
Sol: [2]
 $n_l = n_{sc}$
(n+8) 100 = (n-8) 101
 $\frac{n+8}{n-8} = \frac{101}{100}$
 $\frac{n}{8} = \frac{201}{1}$
 $n = 1608$
83. The objective and eyepiece of an astronomical telescope are double convex lenses with refractive index 1.5. When the telescope is adjusted to infinity, the separation between the two lenses is 16 cm. If the space between the lenses is now filled with water and again telescope is adjusted to infinity, the separation between the tenses is 1.1 8 cm 2) 16 cm 3) 24 cm 4) 32 cm
Sol: [4]
 $\frac{\mu_i}{v} - \frac{\mu_i}{u} = \frac{\mu_i - \mu_i}{R_i} + \frac{\frac{\mu_i - \mu_i}{R_2}}{-R}$
 $\frac{4}{3f_0^4} - \frac{1}{\pi} = \frac{1.5 - 1}{R} + \frac{\frac{4}{3} - 1.5}{-R}$
 $\Rightarrow f_0^4 = 2f$
Now length $= f_0^4 + fe^1$
 $= 2f_0 + 2fe$
 $= 2(16)$
 $= 32 cm$

ENGINEERING (CODE-D)

A short bar magnet in a vibrating mangnetometer makes 16 oscillations in 4 seconds. 86. Another short magnet with same length and width having moment of inertia 1.5 times the first one is placed over the first magnet and oscillated. Neglecting the induced magnetization, the time period of the combination is 3) $\frac{2}{\sqrt{10}}$ s 4) $\frac{2.5}{\sqrt{10}}$ s 2) $20\sqrt{10}$ s 1) $2\sqrt{10}$ s Sol: Bonus A magnetic needle lying parallel to a magnetic field is turned through 60°. The work doen on 87. it is w. The torque required to maintain the magnetic needle in the position mentioned above is 2) $\frac{\sqrt{3}}{2}$ w 1) $\sqrt{3}$ w 3) w/2 4) 2 w Sol: [1] $w = MB(1 - \cos 60)$ $=\frac{MB}{2}$ $\tau = MB\sin\theta$ $=MB\frac{\sqrt{3}}{2}$ $=\sqrt{3} w$ A parallel plate capacitor has a capacity 80×10^{-6} F when air is present between the plates. 88. The volume between the plates is then completely filled with a dielectric slab of dielectric constant 20. The capacitor is now connected to a battery of 30 V by wires. The dielelctric slab is then removed. Then, the charge that passes now through the wire is

1)
$$45.6 \times 10^{-3}C$$

2) $25.3 \times 10^{-3}C$
3) $120 \times 10^{-3}C$
4) $120 \times 10^{-3}C$
Sol: [1]
 $\Delta q = \Delta c V$
 $= (c^{1} - c)V$
 $= (k - 1)\sigma V$
 $= (20 - 1)(80 \times 10^{-6})(30)$
 $= 4.56 \times 10^{-2}$
 $= 45.6 \times 10^{-3}C$

92. Total emf produced in a thermocouple does not depend on

1) the metals in the thermocouple

2) thomson coefficients of the metals in the thermocouple

3) temperature of the junctions

4) the duration of time for which the current is passed through thermocouple

Sol: [4]

93. A long curved conductor carries a current \overline{I} (\overline{I} is a vector). A small current element of length

 \overline{dl} , on the wire induces a magnetic field at a point, away from the current element. If the position vector between the current element and the point is \overline{r} , making an angle with current element then, the induced magnetic field density; \overline{dB} (vector) at the point is (μ_0 = permeability of free space)

1)
$$\frac{\mu_0 \overline{\mathrm{Id}l} \times \overline{\mathrm{r}}}{4\pi r}$$
 perpendicular to the current element $\overline{\mathrm{d}l}$

2)
$$\frac{\mu_0 \overline{\mathbf{I}} \times \overline{\mathbf{r}} \times \overline{\mathbf{d}} l}{4\pi r^2}$$
 perpendicular to the current element $\overline{\mathbf{d}} l$

3) $\frac{\mu_0 \overline{I} \times \overline{dl}}{r}$ perpendicular to the plane containing the current element and position vector \overline{r}

4)
$$\frac{\mu_0 \overline{\mathbf{I}} \times \overline{\mathbf{d}l}}{4\pi r^2}$$
 perpendicular to the plane containing current element and position vector $\overline{\mathbf{r}}$

Sol: Bonus

94. A primary coil and secondary coil are placed close to each other. A current, which changes at the rate of 25 amp in a millisecond, is present in the primary coil. If the mutual inductance is 92×10^{-6} Henries, then the value of induced emf in the secondary coil is

Sol: [2]

$$e = M \frac{di}{dt} = 92 \times 10^{-6} \times \frac{25}{1 \times 10^{-3}} = 2.3V$$

95. The de Broglie wavelength of an electron moving with a velocity of 1.5×10^8 m/s is equal to that of a photon. The ratio of kinetic energy of the electron to that of the photon $(C = 3 \times 10^8 \text{ m/s})$

2) 4 3)
$$\frac{1}{2}$$
 4) $\frac{1}{2}$

Sol: [4]

$$Ratio = \frac{v}{2C}$$
$$= \frac{1.5 \times 10^8}{2 \times 3 \times 10^8} = \frac{1}{4}$$

100	Match		с <i>-D)</i> n <u>A</u> (la	vers in the	ionospher	-2012 e for sk	vwave	nronac	ration)	with colum	e : 12-03-12
100.	height	range)	:	yers in the	lonospiier		y wave	hioha	sation)	with colum	
	Colum	n A				Colu	umn B				
	I) D-lay	yer				a) 25	50-400	km			
	II) E-layer				b) 1′	70-190	km				
	III) F_1 -	layer				c) 95	5-120 k	m			
	IV) F_2 -	layer				d) 6	5-75 kn	n			
	The con	rrent an	swer is								
	Ι	II	III	IV			Ι	II	III	IV	
	1) a	b	c	d		2)	d	с	a	b	
	3) d	с	b	a		4)	с	d	с	b	
Sol:	[3]										
01.	The gr	avitati	onal fi	eld in a reg	pion is give	n by ea	uation	$\vec{F} - (5\vec{r})$	$\hat{i} \pm 12 \hat{j}$	N/ka Ifa	narticle of
101.	mass 2	ko is m	noved f	rom the or	igin to the n	$\frac{1}{1} \frac{1}{1}$	2m 5m	L = (3)	region	the change	in gravita.
	tional j	ootenti	al ener	gy is	igin to the p		2111,0111) III tillis	region,	the change	III 51 a vita-
	1) -225	J		2) -240 J		3) -2	245 J		4) -	250 J	
Sol:	[2]								E		
	dv = -	E.dr									
	$=-(5\hat{i}$	$(+12\hat{j})$	$.(12\hat{i} +$	$(15\hat{j}) =$	=(60+60)=	-120					
	U = m	dv = 2z	×(-120	0) = -240J							
102.	The tin	ne peri	od of a	particle in	simple har	monic n	notion	is 8s. At	t=0. it i	s at the mea	an position.
	The ra	tio of tl	he dista	ances trave	elled by it in	the fir	st and	second	seconds	is	•
	1			(Q) 22 2			1			1	
	1) $\frac{1}{2}$			2) $\frac{1}{\sqrt{2}}$		3) -	$\frac{1}{\sqrt{2}-1}$		4)	$\sqrt{3}$	
Sale	[2]			12			100			VS	
501.	[3]										
	$y_1 = A$	$\sin\frac{2\pi}{8}$	$\times 1 = \frac{1}{\sqrt{2}}$	$\frac{4}{\sqrt{2}}$ $y_2 =$	$=A-\frac{A}{\sqrt{2}}$	$\frac{y_1}{y_2} =$	$=\frac{1}{\sqrt{2-2}}$	1			
103.	A tensi	on of 2	2 N is a	applied to a	a coppper w	vire of c	ross-se	ectional	area 0.0	02 cm ² You	ng's modu-
	lus of c	opper i	is 1.1x1	10^{11} N/m ² ar	nd poisson's	s ratio 0	.32. Th	e decre	ase in ci	ross section	al area will
	be										
	1) 1.28	$\times 10^{-6}c$	m^2	2) 1.6×1	$0^{-6} cm^2$	3) 2	.56×10	$-6 cm^{2}$	4)	$0.64 \times 10^{-6} c$	m^2
Sol:	[4]										
		.1	F		\mathbf{r}						
	$y = \frac{F}{A}$	$\frac{\langle l}{e}; e/$	$l = \frac{T}{Ay}$	$=\frac{1}{0.02\times 10}$	$\frac{22}{0^{-4} \times 1.1 \times 10}$	$\frac{1}{1} = 10^{-1}$	-4				
		Δr									
	$\sigma = - \underline{\Delta}$	$\frac{r}{\Delta r}; \frac{2}{r}$	$\frac{\Delta r}{r} = \sigma$	$\frac{\Delta l}{l} = 0.32$	$\times \frac{\Delta l}{l} = 0.32$	2×10 ⁻⁴	= 32×	10^{-6}			
	$\frac{1}{2}\frac{\Delta A}{A}$ =	= 0.32>	×e/l	$\Delta A = 0.$	$64 \times 10^{-6} cm$	2					

104. Drops of liquid of density 'd' are floating half immersed in a liquid of density ρ. if the surface tension of the liquid is T, then the radius of the drop is

$$1)\sqrt{\frac{3T}{g(3d-\rho)}} \qquad 2)\sqrt{\frac{6T}{g(2d-\rho)}} \qquad 3)\sqrt{\frac{3T}{g(2d-\rho)}} \qquad 4)\sqrt{\frac{3T}{g(4d-3\rho)}}$$

Sol: [3]

$$\frac{4}{3}\pi r^3 dg = \frac{2}{3}\pi r^3 \rho g + T \times 2\pi r$$
$$r = \sqrt{3T}$$

 $r = \sqrt{\frac{3I}{g\left(2d - \rho\right)}}$

105. A pipe having an internal diameter 'D' is connected to anther pipe of same size. water flows into the second pope through 'n' holes, each of diameter 'd'. If the water in the first pipe has speed 'V', the speed of water leaving the second pipe is

1)
$$\frac{D^2 v}{nd^2}$$
 2) $\frac{nD^2 v}{d^2}$ 3) $\frac{nd^2 v}{D^2}$ 4) $\frac{d^2 v}{nd^2}$
Sol: [1]
 $\pi \left(\frac{D}{2}\right)^2 X \vartheta = \left(\frac{d}{2}\right)^2 X \vartheta^1$ $v^1 = \frac{D^2 v}{nd^2}$

106. When a liquid is heated in copper vessel its Coefficient of apparent expansion is $6x10^{-6} / {}^{0}C$. When the same liquid is heated in a steel vesel its coefficient of apparent expansion is $24x10^{-6} / {}^{0}C$. If coefficient of linear expansion for copper is $18x10^{-6} / {}^{0}C$. the coefficient of linear expansion for steel is

1)
$$20x10^{-6} / {}^{0}C$$
 2) $24x10^{-6} / {}^{0}C$ 3) $36x10^{-6} / {}^{0}C$ 4) $12x10^{-6} / {}^{0}C$

Sol: [4]

 $\gamma_{a_1} + 3\alpha_1 = \gamma_{a_2} + 3\alpha_2$

 $6 \times 10^{-6} + 3(18 \times 10^{-6}) = 24 \times 10^{-6} + 3\alpha_2$

$$\alpha_2 = 12 \times 10^{-6} / C$$

107. When the temperature of a body increases from T to T + \triangle T, its moment of inertia increases from I to I + \triangle I. If α is the coefficient of linear expansion of the material of the body, then

 $\frac{\Delta I}{I}$ is (neglect higher orders of α

1)
$$_{\alpha \bigtriangleup T}$$

2

$$3)\frac{\Delta T}{\alpha} \qquad \qquad 4)\frac{2\alpha}{\Delta T}$$

Sol: [2]

$$\frac{\Delta I}{I} = 2 \frac{\Delta k}{k} = 2 \alpha \Delta T \qquad \qquad \frac{\Delta I}{I} = 2 \alpha \Delta T$$

2) $2\alpha \Delta T$

108. A sound wave passing through an ideal gas at NTP produces a pressure change of 0.001

$$\begin{aligned} & \text{dyn}(\mathbf{m}(\mathbf{m}(\mathbf{n}))) & \text{during adiabatic compression. The corresponding change in temperature ($\gamma = 1.5 \text{ for the gas and atmospheric pressure is 1.013 x10° dynes/cm²) is} \\ & 1) 8.97 x10^{-t} K & 2) 8.97 x10^{-s} K & 3) 8.97 x10^{-t} K & 4) 8.97 x10^{-s} K \\ & \text{Sol: [3]} \\ & T^{2} p^{1-2} = Const \\ & T^{2-p} r^{-1} \\ & T = (p) \frac{\gamma - 1}{\gamma} \\ & \frac{\Delta T}{T} = \frac{\gamma - 1}{\gamma} \frac{\Delta T}{T} = \frac{\gamma - 1}{\gamma} \times \frac{\Delta p}{p} \\ & \text{109. Work done to increase the temperature of one mole of an ideal gas by 30°C, if it is expanding under the condition $V \propto T^{250}$ is, (R =8.314 J/mole? K) \\ & \text{1116.2J} \\ & \text{2) 136.2J} \\ & \text{3) 166.2J} \\ & \text{4) 186.2J} \\ & \text{Sol: [3]} \\ & vaT^{2't} \\ & Pa \sqrt{v} \\ & w = \int p\delta v \\ & w = \int 2/3NRT |_{v_{1}}^{\tau^{2}} \\ & = 2/3X11X8.3X30 \\ & = 166.2 \\ & \text{110. Power radiated by a black body at temperature T, is P and it radiates maximum energy at a wavelength $\frac{\lambda}{2}$. The power radiated at T_{2} is $1) 2P \\ & \text{20.1 A P} \\ & \text{30.1 P} \\ & \text{30.1 A P} \\ & \text{30.1 C} \\ & \text{30.1$$$$

111. Two solid spheres A and B each of radius 'R' are made of materials of densities
$$\rho_{A}$$
 and ρ_{g}
respectively, their moments of inertia about a diameter are I_{A} and I_{a} respectively. The value
of $\frac{I_{A}}{I_{g}}$ is
 $1)\sqrt{\frac{p_{A}}{p_{g}}}$ 2) $\sqrt{\frac{p_{R}}{p_{A}}}$ 3) $\frac{\rho_{A}}{\rho_{a}}$ 4) $\frac{\rho_{a}}{\rho_{A}}$
Sol: [3]
 $\frac{I_{A}}{I_{a}} = \frac{2/5M_{A}R_{a}^{2}}{2/5M_{A}R^{2}}$
 $\frac{4/3\pi R^{2}p_{A}}{4/3\pi R^{2}p_{A}}$
 $= \frac{\mu_{A}}{p_{g}}$
112. Assertion (A) : The moment of inertia of a steel sphere is larger than the moment of inertia
of a wooden sphere of same radius.
Reason (R) : Moment of inertia is independent of mass of the body
The correct one is
1) Both (A) and (R) are true, and (R) is the correct explanation of (A)
2) Doth (A) and (R) are true, and (R) is not the correct explanation of (A)
3) (A) is true but (R) is true
113. When the engine is switched off a vehicle of mass 'M' is moving on a rough horizontal road
with momentum P. If the coefficient of friction between the road and tyres of the vehicle is μ_{L}
the distance travelled by the vehicle before it comes to rest is
1) $\frac{p^{2}}{2\mu_{L}M^{2}g}$ 2) $\frac{2\mu_{L}M^{2}g}{p^{2}}$ 3) $\frac{f^{2}}{2\mu_{L}g}$ 4) $\frac{p^{2}M^{2}}{2\mu_{L}g}$
Sol: [1]
 $\mu_{L}mgs = \frac{p^{2}}{2M}$
 $S = \frac{p^{2}}{2M^{2}}\mu_{L}g$

116. In Atwood's machine, two masses 3 kg and 5 kg are connected by a light string which passes over a frictionless pulley. The support of the pulley is attached to the ceiling of a compartment of a train. If the train moves in a horizontal direction with a constant acceleration 8 ms⁻² the tension in the string in Newtons is $(g = 10ms^{-2})$ 2) 7.5 4) 20 1) 3.75 3) 15 Sol: Bonus $a = \frac{20}{8} = \frac{5}{2}$ $= 2\sqrt{my^{-2}}$ $= Tan\theta = \frac{24}{2.5}$ $a = \sqrt{64 + 2.5}$ $=\sqrt{64+6.25}$ $=\sqrt{70.25}$ 117. The velocity 'v' reached by acar of mass 'm' at certain distance from the starting poing driven with constant power 'P' is such that 1) $v\alpha \frac{3P}{m}$ 2) $v^2 \alpha \frac{3P}{m}$ 3) $v^3 \alpha \frac{3P}{m}$ 4) $v \alpha \left(\frac{3P}{m}\right)^2$ Sol: [3] $p = \frac{1/2mv^2}{t}$ 118. It is possible to project a particle with a given velocity in tow possible ways so as to make them pass through a poing p at a horizontal distance r from the point of projection. if t_1 and t_2 are times taken to rach this poing in two possible ways, then the product t_1t_2 is proportional to 1) $\frac{1}{r}$ 4) $\frac{1}{r^2}$ 2) r 3) r^2 Sol: [2] $T_1 = \frac{2u\sin\theta}{g}$ $T_2 = \frac{2u\cos\theta}{g}$ $T_1T_2 = \frac{2u^2\sin\theta\cos\theta}{g}, = \frac{2r}{g}$

EAMCET -2012

127. Identify the product in the following reaction OH CHCl₃ Product NaOH OH OH CO_2H CHO CO₂H CHO 2) 3) 4) 1) Ans : [2] Sol: Theory (Reaction of Phenol) OH OH CHO CHCl₃/NaOH Reimer. Tiemann's Reaction Ortho-Hydroxy benzaldehyde (Salicylaldehyde) 128. With respect to chlorobenzene, which of the following statements is NOT correct? 1) Cl is ortho/para directing 2) Cl exhibits +M effect 4) Cl is meta directing 3) Cl is ring deactivating Ans : [4] Sol : Theroy (Directional Nature of chlorine) Cl- is not a metadirecting group Cl-is an ortho, para directing group Cl- is an electron with drawing group (-I group) Cl- is a +M group (due to one pairs of electron of chlorine)

129.	Match t	he follow	ing				
	List -I					List -II	
	A) Aceta	ıldehyde,	Vinyl	alcohol		I) Enantiomers	
	B) Eclip	sed and s	stagge	red etha	ine	II) Tautomers	
	C) (+)2-	Butanol,	(-) 2 - J	Butanol		III) Chain isome	rs
	D) Meth	yl -n-pro	pylan	nine and	Diethylan	nine IV) Conformatio	onal isomers
						V) Metamers	
	(4	A) (1	B)	(C)	(D)		
	1) (I	I) (I	(V)	(III)	(V)		
	2) (I	I) (I	(V)	(I)	(V)		
	3) (V) (I	() ()	(IV)	(II)		
	4) (V) (I	()	(III)	(II)		
Ans :	: [2]	, ,		1	and the second		
Sol :	Theory						
	A) Aceta	aldehyde,	Vinyl	alcohol	- Tautome	rs(II)	
	B) Eclip	sed and s	tagge	red etha	ne - Confo	rmational isomers	
	C) (+)2-	Butanol,	(-) 2-]	Butanol	- Enantion	ners(I)	
	D) Meth	yl -n-pro	pylan	nine and	Diethylan	nine - Metamers	
130.	Which o	of the foll	lowing	g statem	ents is NO'	T correct ?	
	1) The si	x carbons	s in be	nzene are	e sp ² hybrid	lised	
	2) Benze	ene has (4	ln +2)	π electro	ons		
	3) Benze	ene underg	zoes su	ibstitutio	on reactions		
			1			0	0
	4) Benze	ene has tw	'o carb	on-carbo	on bond len	igths, 1.54 A and 1.34	A
Ans :	[4]						
Sol:	Theory						
	In Benze	ene C-C b	ond le	ngth is 1	$.39 \text{A}^{0} \text{due}^{-1}$	to resonance	
131.	Differen	t conform	natior	ns of the	same mole	cule are called	
	1) Isome	rs	/	2) Epime	ers	3) Enantiomers	4) Rotamers
Ans :	[4]						
Sol:	Theory . T are called	The other r d Rotamer	1ame c rs	of confon	nratoinal iso	omerism is Rotamerism	n and the different comfomations
132.	The chlo	orination	of eth	ane is a	n example	for which type of the	following reactions ?
	1) Nucle	ophilic su	bstitut	ion		2) Electrophilic su	bstitution
	3) Free ra	adical sub	stitutio	on		4) Rearrangement	
Ans :	[3]						
Sol :	Theory . reaction.	Chlorinat	ion of	ethane i	n presence	of sunlight is an exan	nple for free radical substitution
133.	The pair	r of gases	respo	onsible f	or acid rai	n are	
	1) H ₋ , O		/	2) H.C.	0,	3) NO ₂ ,SO ₂	4) CO, CH
Ane ·	· [3]	5	-	· 4 ⁻ ·	3	2 2 2	· · 4
	Theory '	The cause	$ of \Lambda_{c} $	vid rain i	n due to ov	ides of Nitrogen and a	ulphur $(NO and SO)$
501.	r neory.			iu iaili ll		ides of minogen and s	$(100_2 \text{ and } 50_2)$

ENGIN	EERING (CODE-D)	EAMCI	ET -2012	Date : 12-05-12				
134.	34. In photoelectric effect, if the energy required to overcome the attractive forces on the electron,							
	(work functions) of function of 'K' could	L1, Na and Kb ai I approximately be	$\begin{array}{c} \text{re 2.41eV, 2.30eV and 2.} \\ \text{o in eV} \end{array}$	09ev respectively, the work				
	1) 2.52	2) 2.20	3) 2.35	4) 2.01				
Ans :	[2]	2) 2.20	5) 2.55	1) 2.01				
Sol:	Sol : (Theory)In IA group from Li to Cs (Top to bottom) IP value decreases. Therefore the energy required							
	to overcome the attraction than Rb	tive forces on the el	ectron in potassium should	be less than sodium and more				
	Li = 2.41ev	Na = 2.30eV	K= 2.20eV	Rb=2.09eV				
135.	The quantum numbers of the second sec	er which explains t s and doublets and	he line spectra observed triplets in case of alkalin	as doublets in case of hydro- e earth metals is				
	1) Spin	2) Azimuthal	3) Magnetic	4) Principal				
Ans :	[1]							
Sol :	Theory Principle, Az spectra observed as de case of alkaline earth number	zimuthal and magne oublets in case of hy metals. This sugges	etic quantum number are p ydrogen and akali metals a sts the presence of fourth q	not enough to explain the line and doublets and triplets in the quantum number spin quantum				
136.	Which one of the fol	lowing cannot for	m an amphoteric oxide ?					
	1) Al	2) Sn	3) Sb	4) P				
Ans :	[4]			07. /				
Sol:	Theory .Phusphorus is	a non.metal .Theref	fore it forms only Acidic or	xide				
137.	The formal charges	of C and O atoms i	$\operatorname{in} \operatorname{CO}_2(: \overset{\circ}{0} = C) =$	$= \overset{\cdots}{0}$:) are, respectively				
	1) 1,-1	2) -1,1	3) 2,-2	4) 0,0				
Ans :	[4]			069 L				
Sol :	Formal charge = N_A –	$N_{LP} - \frac{1}{2}N_{BP}]$						
	$_{A} = $ No.of electrons i	in the valency shall	in the free atom					
	$N_{Lp} = No.of$ electrons	in line pairs						
	$N_{BP} = No.of$ electrons	in Bond pairs						
	$\ddot{O} = C = \ddot{O}$							
	$Qf = 6 - 4 - \frac{1}{2}(4) = 0$							
	$Qf = 6 - 4 - \frac{1}{2}(4) = 0$							
138.	According to molecu	llar orbital theory,	the total number of bond	ling electron pairs in O, is				
	1) 2	2) 3	3) 5	4) 4				
Ans :	[3]							
Sol:	$\boxed{\sigma 1 s^2} \sigma^* 1 s^2 \boxed{\sigma 2 s^2} \boxed{\sigma 2 s^2} \sigma^* 1 s^2 \boxed{\sigma 2 s^2} \sigma^* 1 s^2 \boxed{\sigma 2 s^2} \sigma^* 1 s^2 \boxed{\sigma 2 s^2} \sigma 2 s$	$\sigma^* 2 s^2 \sigma^2 p_z^2$						
	$\boxed{\pi 2 P_4^2} = \boxed{\pi 2 P x^2}$	$\pi^* 2 p_x^1 = \pi * 2 p_y^1$						

142.	The experimentally determined molar m	ass of a non-volatile solute, BaCl, in water by Cottrell's
	method, is	
	1) equal to the calculated molar mass	2) more than the calculated molar mass
	3) less than the calculated molar mass	4) double of the calculated molar mass
Ans	: [3]	
Sol :	Theory	
	When an ionic compound like BaCl ₂ diss creases.	olves in water it ionises (ie) the number of particles in-
	\therefore The observed mol wt of any ionic com	pound is less than the calculated (Theoritical) Mol.wt
143.	The number of moles of electrons requin (NO ₂) , is (At. wt. of Al = 27)	red to deposit 36 g of Al from an aqueous solution of Al
	1) 4 2) 2	3) 3 4) 1
Ans	:[1]	
Sol :	Theory	
	Eq: wt of $Al = \frac{Atwt}{voleng} = \frac{27}{3} = 9$	
	To deposit 9g (1gm equivalent) of	
	Aluminium = 1 F of electricity required	
	= 96500 colomb electricity requ	uired
	= 1 mole of electrons required	
	\therefore To deposit 36g Al= 4 moles of electron	s required.
144.	The emf (in V) of a Daniel cell containir	ng 0.1 M ZnSO ₄ and 0.01 M CuSO ₄ Solutions at their
	respective electrodes is $(E^0_{Cu^{2+} Cu}=0.34V;)$	$E^0_{Zn^{2+} Zn} = -0.76V)$
	1) 1.10 2) 1.16	3) 1.13 4) 1.07
Ans	: [4]	
Sol:	Numerical	
	$E_{cell} = E_{cell}^{0} - \frac{0.06}{100} \log \frac{(products)}{(products)}$	
	n = (Re action)	
	$\left[E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}\right]$	
	At anode	
	$Zn \rightarrow Zn^{2+} + 2e^{-}$	
	At cathode $Cu^{2+} + 2e^- \rightarrow Cu$	$Cu^{2+} + Zn \longrightarrow Cu + Zn^{2+}$ (0.01M) (0.1M)
	$E_{cell} = E_{cell}^{0} - \frac{0.06}{2} \log \frac{\left[Z_{n}^{2+}\right]}{\left[Cu^{2+}\right]}$	$E_{cell} = \left[0.34 - (-0.76)\right] - \frac{0.06}{2} \log \frac{10^{-1}}{10^{-2}}$ = 1.1 - 0.03 log 10 = 1.1 - 0.03 = 1.07V

ENGI	NEERING (CODE-D)	EAMCET	-2012	Date : 1.	2-05-12
145.	Which one of the fol	lowing elements, whe	n present as an imj	purity in silicon makes it a	p-type
	1) As	2) P	3) In	4) Sb	
Ans	[3]	-) -	0)	.) ~ ~	
Sol :	P-type semi conducto	or is prepared by doping	g IV A group eleme	nt (Si) with IIIA group like	B, Ga,
140	In,etc	41 6 11 •			
146.	Which one of	the following s	statements is	correct for the real	action
	$CH_{3}COOC_{2}H_{5} + NaC$ (aq) (aq)	$H \rightarrow CH_3 COONa+C_2$) (aq) (aq)			
	1) Order is two but m	olecularity is one	2) Order is one	but molecularity is two	
	3) Order is one but m	olecularity is one	4) Order is two	but molecularity is two	
Ans:	[4] (Theory) Sooppification	on of ester is a second	order reaction and n	polecularity of the reaction i	is two
501.	(Theory) Soaphilican			notecularity of the reaction	is two.
	$Rate = k(ester)^{r} (Na$	OH) [*]			
147.	The catalyst and pro ammonia are	omoter respectively us	sed in the Haber's	process of industrial syntl	nesis of
	1) Mo, V_2O_5	2) V_2O_5 , Fe	3) Fe, Mo	4) Mo, Fe	
Ans :	[3]				
		Fe_ Catalyst			
Sol :	Theory $N_2 + 3H_2$	M _o - promotor	H_3 ; $\Delta H = -22$.4kcl	
148.	Which one of the fol	llowing statements is I	NOT correct ?		
	1) The pH of 1.0 x 10	O ⁻⁸ M HCl is less than 7			
	2) The ionic product	of water at 25°C is 1.0	x 10 ⁻¹⁴ mol ² L ⁻²		
	3) Cl^{-} is a Lewis ac	eid.			
	4) Bronsted - Lowr	ry theory cannot expl	ain the acidic cha	racter of AlCl ₂ .	
Ans	[3]			5	
Sol:	Theory				
	Cl^{-} is a Lewis base	and not a Lewis acid			
149.		\dots , p) of water a	t constant pressur	re is 75 J.K ⁻¹ . mol ⁻¹ . The in	crease
	in temperature (in	K) of 100 g of water	r when 1 K.J. of l	neat is supplied to it is	
	1) 2.4	2) 0.24	3) 1.3	4) 0.13	
Ans:	[1]				
501:	Numerical Molar heat capacity (\mathbf{C}) is for 1 mole to rise	the temperature by	1 ⁰ C	
	\therefore For 18g water = 7.	C_p is for 1 mole to fise 5J.k ⁻¹ .mole ⁻¹	the temperature by	10	
	$\Delta H = nC_{p}.\Delta t$				
	$1000 = \frac{100}{100}.75 \times t$				
	t = 2.4 18				

150. Gelly is a colloidal solution of 1) Solid in liquid 2) Liquid in solid 3) Liquid in liquid 4) Solid in solid Ans : [2] Sol: Theory Gelly is a coloidal solution of liquid in solid 151. The product (s) formed when H₂O₂ reacts with disodium hydrogen phosphate is 1) P_2O_5 , Na_3PO_4 2) Na_2HPO_4 , H_2O_2 3) NaH_2PO_4 , H_2O 4) Na_2HPO_4 , H_2O Ans : [2] Sol: Theory H_2O_2 can form addition compound with Disodium hyderogen phosphate Na₂HPO₄.Na₂HPO₄.H₂O₂ 152. Which of the following is NOT correct? 1) LiOH is a weaker base than NaOH 2) Salts of Be undergo hydrolysis 3) $Ca(HCO_3)_2$ is soluble in water 4) Hydrolysis of beryllium carbide gives acetylene Ans : [4] Sol: Theory Hydrolysis of Beryllium carbide given methane **153.** What is Z in the following reactions ? $BCl_3 + H_2 \xrightarrow{Cu-Al} X + HCl X \xrightarrow{methylation} Z$ 1) $(CH_3)BH_2$ 2) $(CH_3)_4 B_2 H_2$ 3) $(CH_3)_3 B_2 H_3$ 4) $(CH_3)_6 B_2$ Ans : [2] $BCl_{3} + H_{2} \xrightarrow{Cu-Al} B_{2}H_{6} + HCl$ Sol: $B_{2}H_{6} + 4CH_{3}Cl \xrightarrow{methylatin} (CH_{3})_{4}B_{2}H_{2}$ 154. Which one of the following elements reduces NaOH to Na? 1) Si 2) Pb 3) C 4) Sn Ans : [3] Sol: Theory $6 N a O H + 2 C \longrightarrow 2 N a + 2 N a C O + 3 H$ Here carbon act as raducing agent 155. Which one of the following is used in the preparation of cellulose nitrate ? 3) KNO₂ 1) KNO_2 2) HNO₃ 4) HNO_{2} Ans : [2] Sol: Theory One of the use of HNO₃ is used in the preparation of cellulosenitrate

ENGINEERING (CODE-D)	EAMCET -2012	Date : 12-05-12
160. Ni anode is used in the ele	ctrolytic extraction of	
1) Al	2) Mg	
3) Na by Down's process	4) Na by Castner's pro	ocess
Ans : [4]		
Sol : Theory		
In castners process of the extra	ction of sodium, Ni act as anode	
ri Chaitanya		Page.No: 4